

ASCS does not claim to have authored these notes. Neither ASCS nor the Faculty of Economics, Management or Accountancy (FEMA), is responsible for the contents found within such notes.

These notes are an important study resource meant to supplement the content provided during lectures, yet they are in no way intended to replace lecture notes. There may have been changes in some study-units.

If you require any further information and assistance feel free to contact us on academicascs@gmail.com.

Lutonal Shall Not

ai)
$$\int_{1}^{3} k(4-x) dx = 1$$
 $k \left[\frac{4x - x^{2}}{2} \right]^{3} = 1$
 $k \left\{ \frac{(2-9)}{2} - \frac{(4-1)}{2} \right\} = 1$
 $k \left\{ \frac{(4-1)}{2} - \frac{(4-1)}{2} - \frac{(4-1)}{2} \right\} = 1$
 $k \left\{ \frac{(4-1)}{2} - \frac{(4-1)}{2} - \frac{($

1

$$=\frac{1}{4}\begin{bmatrix} \frac{1}{4}x^{2} - \frac{1}{3} \\ \frac{1}{3}x^{2} - \frac{3}{3} \end{bmatrix} - \begin{bmatrix} 2 \cdot 1^{2} - 1^{3} \\ \frac{1}{3}x^{2} - \frac{3}{3} \end{bmatrix} - \begin{bmatrix} 2 \cdot 1^{2} - 1^{3} \\ \frac{1}{3}x^{2} - \frac{1}{3}x^{2} \end{bmatrix}$$

$$=\frac{1}{4}\begin{bmatrix} (8-9) - (2-1)^{2} \\ 4 - \frac{1}{3}x^{2} \end{bmatrix}$$

$$=\frac{1}{4}\begin{bmatrix} (27-5)^{2} \\ 4 - \frac{1}{3}x^{2} \end{bmatrix}$$

$$=\frac{1}{4}\begin{bmatrix} (4-x) \\ 3 - \frac{1}{4}x^{3} - \frac{1}{4}x^{4} \end{bmatrix}$$

$$=\frac{1}{4}\begin{bmatrix} (36-x) \\ 4 - \frac{1}{3}x^{3} - \frac{1}{4}x^{4} \end{bmatrix} - \begin{bmatrix} 4 \cdot 1^{3} - 1^{4} \\ 3 - \frac{1}{4}x^{3} \end{bmatrix}$$

$$=\frac{1}{4}\begin{bmatrix} (36-x) \\ 4 - \frac{1}{3}x^{3} \end{bmatrix}$$

$$= 11 \quad i.e \quad E(x^2) = 11$$

$$3 \quad 3$$

$$|(ax(x))| = E(x^2) - [E(x)]^2$$

$$= 11 - [21]$$

$$3 \quad 36$$

$$= 132 - 121$$

$$36$$

$$= 11 \quad i.e \quad |(ax(x))| = 11$$

$$36$$

$$= 134 \quad i.e \quad |(ax(x))| = 11$$

$$36$$

$$= 0.5527708$$
b) i
$$|(x+2)| dx = 1$$

$$e(x^2 + 2x + 2x + 3) = 1$$

$$e(x^2 + 2x + 3) = 1$$

$$F(x) = \frac{2(x+2)}{27}$$

$$F(x) = \int_{27}^{42} (x+2)x dx$$

$$= \frac{2}{27} \int_{1}^{4} (x^{2}+2x) dx$$

$$= \frac{2}{27} \left[\frac{4^{3}}{3} + 4^{2} + k \right] - \left(\frac{1^{3}}{3} + \frac{1^{2}}{4^{2}} + k \right)^{\frac{1}{3}}$$

$$= \frac{2}{27} \left[\frac{(4^{3} + 4^{2} + k)}{3} - \left(\frac{1^{3}}{3} + \frac{1^{2}}{3} + k \right)^{\frac{1}{3}} \right]$$

$$= \frac{2}{27} \left[\frac{112}{3} - \frac{4k}{3} \right]$$

$$= \frac{2}{27} \left[\frac{112}{3} - \frac{4k}{3} \right]$$

$$= \frac{2}{27} \left[\frac{112}{3} - \frac{4k}{3} \right]$$

$$= \frac{2}{27} \left[\frac{4}{3} + 2x^{2} + k \right]^{\frac{1}{3}}$$

$$= \frac{2}{27} \left[\frac{4}{4} + \frac{2}{3} + 2x^{2} + k \right]^{\frac{1}{3}}$$

$$= \frac{2}{27} \left[\frac{4^{4}}{4} + \frac{2}{3} + \frac{4^{3}}{3} - \left(\frac{1^{4}}{4} + \frac{2}{3} \right)^{\frac{1}{3}} \right]$$

$$= \frac{2}{27} \left[\frac{6^{4}}{4} + \frac{128}{3} - \left(\frac{1}{4} + \frac{2}{3} \right)^{\frac{1}{3}} \right]$$

$$= \frac{2}{27} \left[\frac{(192 + 128)}{3} - \left(\frac{3 + 8}{12} \right) \right]$$

$$= \frac{2}{27} \left[\frac{(192 + 128)}{3} - \left(\frac{3 + 8}{12} \right) \right]$$

$$\frac{2}{27} \left\{ \frac{320 - 11}{3} \right\}$$

$$= \frac{2}{27} \left\{ \frac{1280 - 11}{124} \right\}$$

$$= \frac{2}{27} \left\{ \frac{1280 - 11}{124} \right\}$$

$$= \frac{47}{6} - \frac{128}{6}$$

$$= \frac{47}{6} - \frac{64}{9}$$

$$= \frac{147 - 64}{18}$$

$$= \frac{13}{18}$$

$$= \frac{1}{27} \left\{ \frac{2}{27} \left(\frac{2}{2} + 2n + 1k \right) - \left(\frac{1}{2} + 2 \right) \right\} = \frac{1}{2}$$

$$= \frac{2}{27} \left\{ \frac{(\alpha^2 + 2\alpha)}{2} - \left(\frac{1}{2} + 2 \right) \right\} = \frac{1}{2}$$

$$= \frac{2}{27} \left\{ \frac{(\alpha^2 + 2\alpha)}{2} - \frac{5}{2} \right\} = \frac{1}{2}$$

$$= \frac{27}{2}$$

$$= \frac{2}{1}$$

$$\frac{a^{2} + 2a = \frac{27}{4} + 5}{4}$$

$$\frac{a^{2} + 2a = \frac{37}{4}}{2}$$

$$\frac{a^{2} + 8a = 37}{2a^{2} + 8a - 37 = 0}$$

$$a = -8 \pm \sqrt{8^{2} - 4 \cdot 2 \cdot -37}$$

$$\frac{22}{2}$$

$$= -8 \pm \sqrt{86} + 296$$

$$\frac{4}{4}$$

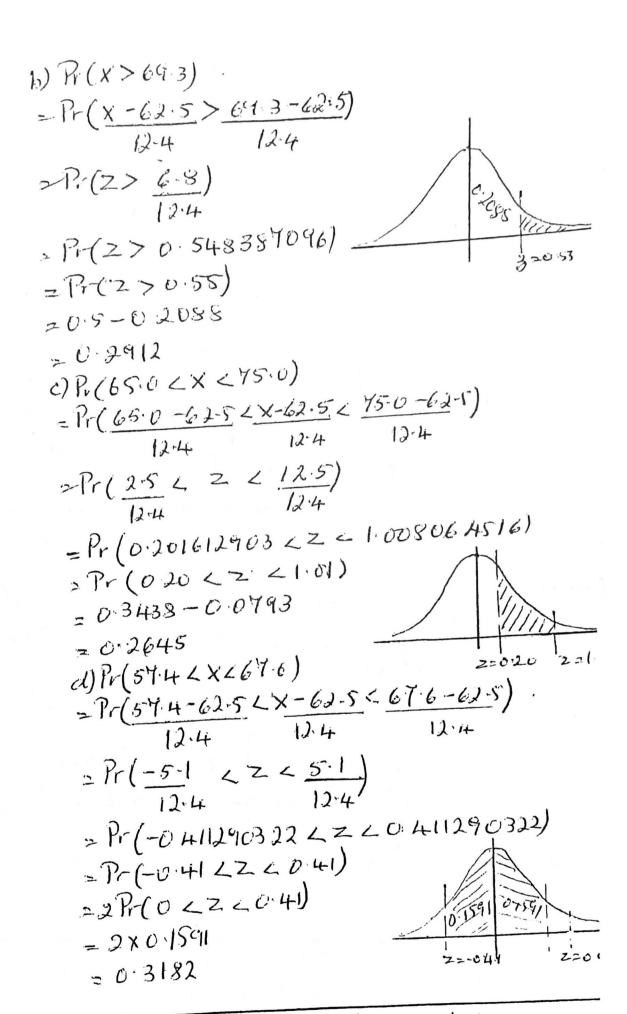
$$= -8 \pm \sqrt{86} + 296$$

$$\frac{4}{4}$$

$$= -4 \pm 3\sqrt{10}$$

$$2$$

$$= -13 \cdot 48483298, 5 \cdot 486832981$$


$$2$$

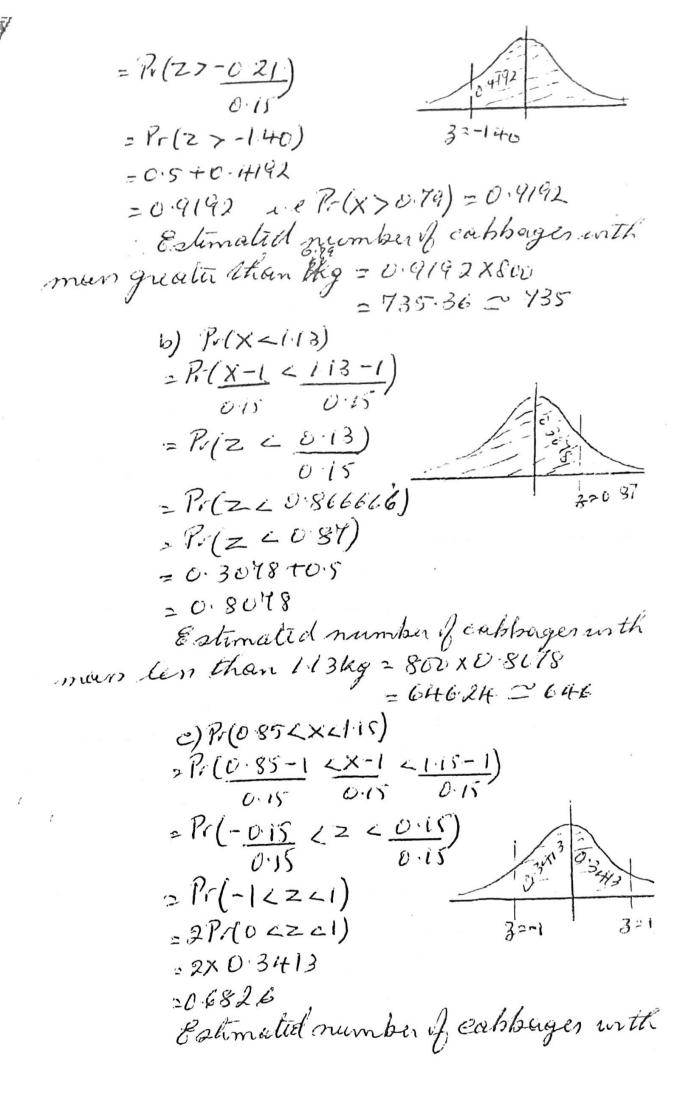
$$= -6 \cdot 7 + 341649, 2 \cdot 743416491$$

$$\therefore a = 2 \cdot 7434$$

2 a)
$$R-(x < 40.1)$$

 $= R-(x - 62.5 < 40.1 - 62.5)$
 $= R-(z < -22.4)$
 $= R-(z < -1.806451613)$
 $= R-(z < -1.81)$
 $= 0.5 - 0.4649)$

= 0 0351



=1 (x>0) = P. (X-1-5} > 0-1-5}) -Pr(Z75) = Pr(2>10666667) = Pr(2>167) = 0.5-0.4525 : 0.0475 1.2 P.(X>0) = 0.0475. b) The situation discussed here represents a binimial distribution Then let p: Pi(X>0) n e. p: 0 0445 and 1-p: 1-0.0475 01-p: 0.9525 with a positive value for the characteristic : Pr(Y=4) =10 (4 (0.0475)4 (0.9525)6 we know the probability of occurre and prehability =101 (0.0475)4 (0.9525)6 416! =10.987 (0.0475) 4 (0.9525)6 1.2.34 = 210(0.0475)4(0.9525)+ = 210 X5.09 CHE HOEZ XIO XO 7467752 = 4 983321867X10 -4 = 0.0007983321867 20 0008

Let X be the man la cabberge 4 a) Pr(X>079) = Pr (X-1 > 0.79-1)

Buromust because

of not coulding)

man between 0 85kg and 1.15kg is 800 x 0.0826 546.08 ~ 576 d) Pr(075-12x-12129-1) = Pr(-025 (2 < 0.29) 0.15 0.15 0.15 = Pr(-1.6666 < 2 < 1.9333) 10-132 1 = Pr(-1.67<2< 1.93) 32-107 32193 = 0.4525+0.4732 = 0.9257 Batimated number of cabbages with a man between 0.75kg cond 1.29kg is 800 x 0.9257: 740.52 = 741.

 $P_{r}(X>65.6) = 0.0212$ $P_{r}(X>65.6) = 0.0212$ $P_{r}(X>52.5) = 0.0212$ $P_{r}(Z> 13.1) = 0.0212$

5

=P. (2> 0.646153846) = Pr(z>065) = 05-0-2422 = 0-2578 12 Pr (X>56.7) = 0 2578 11) Pr(XZ498) = Pr(X-52.5 < 49 8-52.5) = Pr(Z < -2.7) = Pr (ZC-0:415384615) = Pr(Z<-0.42) = 0.5-0.1628 = 0·3372 Pr(X<498)=03372 iii) Pr (59.6 < x < 68.9) = P. (54.6-52.5 < x-52.5 < 68.4-52.5) = Pr(41 22 < 164) =Pr(1092307692<2 22523076923) = P. (10942 < 2.52) = 0.4941 -0.2621 = 0-1320 xx Pr(59-66XX68.9)=0.1320 1V) Pr(42.4 < x < 62.4) ~ Pr(42.4 -52.5 LX-52.5 L62.9-52.5) = Pr(-1014 Zc 10.4) 6.50 657)

=Pr(-1-553846154 <Z < 1-60) = Pr(-1.55 LZ 2160) = D. 4394+ 0:4452 32-155 3=160 = 0.8846 : Pr(42.4CXZ62.4) = 0.8846

The setuction in this problem follows or Renomial Distribution, it ean de approximatily defined as Normal Distribution

Mean = np

=1000X10

= 100 nellean=100

Vanance = 1000 x 10 x 1/2

= 90 il Vomance = 90

Let X be the number of mis shaper in the

a) P. (x<80)

~ P-(x < 79.5)

 $= P_r\left(\frac{x-100}{\sqrt{90}} < \frac{795-100}{\sqrt{90}}\right)$

= Pr(z < -205)

= Pr(Z <-2.160889734)

= Pr(2 <-216)

= D.5 -0.4846

= 0.0154 1.2 Pr(XX80) = 0.0154

b) P. (90 < X 5115)

= Pr(8954X ×1155)

= Pr(845-100 < X-100 < 1155-180)

$$\frac{P_{1}(-10.5 \times 2 \times 15.5)}{\sqrt{q_{1}}}$$

$$\frac{P_{1}(-10.6797181 \times 2 \times 1.633843458)}{20.3665 \times 0.4484}$$

$$= 0.3665 \times 0.4484$$

$$= 0.8149$$

$$x \times P_{1}(90 \times \times 15) \approx 0.8149$$

$$c) P_{1}(x > 119.5)$$

$$= P_{1}(x > 119.5)$$

$$= P_{1}(x > 19.5)$$

$$= P_{2}(x > 19.5)$$

$$= P_{3}(x > 19.5)$$

$$= P_{1}(x > 19.5)$$

$$= P_{2}(x > 19.5)$$

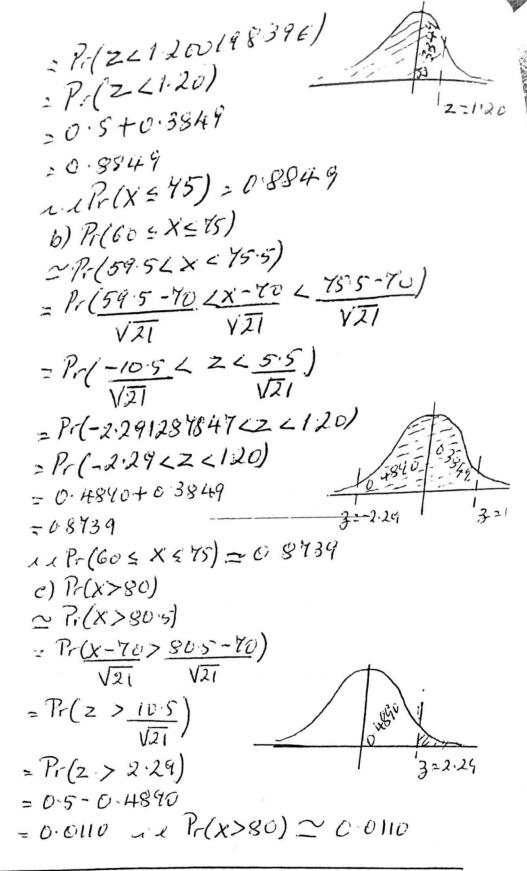
$$= P_{3}(x > 19.5)$$

$$= P_{4}(x > 19.5)$$

$$= P_{5}(x > 19.5)$$

$$= P_{5}(x > 19.5)$$

$$= 0.55 - 0.4803$$


$$= 0.0197$$

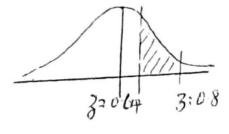
$$= P_{1}(x > 12.0) \approx 0.0197$$

Hein = 0.40 XIV = 40 Vanance = 100 x 0.4 x 0.3 = 21 Let x be the number of mountain bake

ortel

a)
$$R_{1}(x \le 75)$$

 $\simeq P_{1}(x \le 75)$
 $= P_{1}(x - 70) < 75.5 - 70)$
 $\sqrt{21}$
 $= P_{2}(z < 5.5)$
 $\sqrt{21}$


3 X is the number of bacteria on a plate This follows a Poerson distribution that can approximated by normal distribution is x ~ N(60,60)

$$\begin{array}{l} P_{1}(55 < x < 75) \\ \simeq P_{1}(55 < 5 < x < 746) \\ = P_{1}(55 < 5 < x < 746) \\ = P_{1}(55 < 5 < x < 746) \\ = P_{1}(-45) \\ = P_{1}(-45) \\ = P_{1}(-058094750 < 2 < 1.87194195) \\ = P_{1}(-05822 < 187) \\ = P_{1}(-05822 <$$

system for how. This follows a Pouron distribution with mien 30 and can be

approximated by normal distributions ix no a) Pi (X > 331 ~ Pr (X > 33.5) $\frac{Pr(x-30>33.5-30)}{\sqrt{30}}$ = Pr (z > 3.5) = Pr(z 70 6390 0965) = Pr(2>064) = 45-0-2389 = 02611 xx Pr(x>33) = 02611 b) Pr(25 < x < 28) ~Pr(2456X285) = Pr(245-30 < x-30 < 285'-30) = $Pr\left(\frac{-5.5}{\sqrt{30}} < 2 < \frac{-1.5}{\sqrt{30}}\right)$ =Pr(-1004158012 < Z < -0-273861278) -P. (-1.00 <2 < -027) = 0.3413-0.1064 = 0.2349 1 1Pr(25 5 X 5 28) 20 2349 c) Pr(x =34) ~ Pr(33.5 < X < 34.5) $= P_{\sigma} \left(\frac{33.5 - 30}{\sqrt{30}} < \frac{x - 30}{\sqrt{30}} < \frac{34.5 - 30}{\sqrt{30}} \right)$ = $Pr\left(\frac{3.5}{\sqrt{20}} \angle 2 \angle \frac{4.5}{\sqrt{20}}\right)$ = Pr(0-63900965 < Z < 0-821583836) =Pr (0.64/2 < 0.82)

= 0.2434 - 0.2389 = 0.0550 = 0.0550

enpirential distribution in f(t) = No At 10 E(4) = the mean = ftfli) dt = for the At Alt = Al te -At dt = 18-1e-20/2 +11 e-21/2 v = for e-xtall 2 [-e-/t-k] = 1 Now the mean: You e 16 = 1 , such The probability density function for the enforcemental distribution is fft) = Re- ht Pr(OSTEN) = (" Re- et elt =a[-e-at+ b] =1-e-an =1-e-an Pr(0 STSN) =1-e-an Pr(x15TSN) = /20 a e-at ett

$$= \left[\frac{-\alpha e^{-\alpha l_1} + k \right] x_1}{x_1}$$

$$= e^{-\alpha x_1} - e^{-\alpha n x_2}$$

$$Pr(T \ge n) = \int_{n}^{\infty} \alpha e^{-\alpha l} dl$$

$$= \left[-\alpha e^{-\alpha l_1} + k \right]_{n}^{\infty}$$

$$= \left[-\alpha e^{-\alpha l_1} + k \right]_{n}^{\infty}$$

$$= 0 + e^{-\alpha n l_2}$$

$$= 0 + e^{-\alpha n l_2}$$

The mean $\mu = 2000$ hours and so $\lambda = \frac{1}{2000}$ such that $f(n) = \lambda = -1/2$ on $\frac{1}{2000}$

$$= \frac{1}{200} \begin{bmatrix} -2000 & -\frac{1000}{2000} \\ -\frac{100}{2000} \\ -\frac{100}{2000} \end{bmatrix} + e^{-\frac{1000}{2000}}$$

$$= \frac{1}{2000} \begin{bmatrix} -2000 & -\frac{1000}{2000} \\ -\frac{1000}{2000} \end{bmatrix} + e^{-\frac{1000}{2000}}$$

$$= \frac{1}{2000} \begin{bmatrix} -\frac{1000}{2000} \\ -\frac{1000}{2000} \end{bmatrix} + e^{-\frac{1000}{2000}}$$

$$= \frac{1}{2000} \begin{bmatrix} -2000 & -\frac{1000}{2000} \\ -\frac{1000}{2000} \end{bmatrix} + e^{-\frac{1000}{2000}}$$

$$= \frac{-22000}{2000} + e^{-\frac{1000}{2000}}$$

$$= \frac{-2000}{2000} +$$

2

Heren p: :(1+4+7+8)/e

= 20/4

= 5

Variance
$$T^2 = \frac{1}{4}(1-5)^2 + (4-5)^2 + (7-5)^2 + (8-5)^2$$

= $\frac{1}{4}(-4)^2 + (4)^2 + (2)^2 + (3)^2$

= $\frac{1}{4}(-4)^2 + (4)^2 + (2)^2 + (3)^2$

= $\frac{39}{4}$ revaluation of rize 2: (1,4), (1,7), (1,8), (4,7).

(4.8), (7.8), (8.7), (7,4), (8,1), (1,1), (4,1) } (9,4)

Frequency 2 2 2 2 2

No. 2(2.5+4+4.5+5.5+6.47.5)

Huan A. Samplis 2.5 4 4.5 3.5 6 75

Friguency 2 2 2 2 2 2

Muanus = 2(2.5+4+4.5+5.5+6+4.5)

= 2×30 11 Mar = 5

Vanemer 72: 2 (2.5-5) 2+(4-5)2+(45-5)2+(5.5-5)2+(6-5) + (4.5-5)2}/12

~2{(-2.5)2+(-1)2+(-0.5)2+(0.5)2+12+(2.5)2}

=2 (6-25+1+0-25+0-25+1+6-25)

= 2x15 5= 2.5

Now σ_{x}^{2} , $\frac{\tau^{2}}{N-1}$ $=\frac{7.5}{2}\left(\frac{4-2}{4-1}\right)$ $=\frac{4.5}{2}\cdot\frac{2}{3}$

$$Van(\overline{X}) : \frac{\sigma^{2}}{r} \left(\frac{N-n}{N-1} \right)$$

$$= \frac{\sigma^{2} \left(\frac{N-1}{N-1} - \frac{1}{n-1} \right)}{r}$$

$$= \frac{\sigma^{2} \left(1 - \frac{n-1}{N-1} \right)}{r}$$

$$Q_{1} N \Rightarrow \infty, Van(\overline{X}) \rightarrow \frac{\sigma^{2}}{r} an\left(\frac{n-1}{N-1} \right) \neq 0 a_{2} N \neq 0$$

a)
$$Pr(\bar{X} < 48.5)$$
 $\times \sim N(50, 12)$
 $= Pr(\bar{X} - 50) < 48.5 - 50)$ $\bar{X} \sim N(50, 14/12)$
 $= Pr(Z < -1.5)$
 $= 0.5 - 0.4332$
 $= 0.0668$
 $\therefore Pr(\bar{X} < 48.5) = 0.0668$
 $\Rightarrow Pr(\bar{X} < 52.3)$
 $\Rightarrow Pr(\bar{X} < 52.3)$
 $\Rightarrow Pr(Z < 2.3)$
 $\Rightarrow Pr(Z < 2.3)$

3

= N(50,1)

= Pr(X 452-3) =0.9893 c) P(50.7 < x < 51.7) = PHSO.Y-50 (X-50 /51.Y-50) = Pr(0.7 (2 < 1.7)

~0.9893

X~ N(52.5, 6.52) and X~N(52.5, 6.53/20) 4 1) Pr(x>55.6) $-Pr(\bar{x}-52.5) > \frac{55.6-52.5}{6.5/(22)}$ = Pr(z>3.1 6.5/120 - Pr(2 >2.13286484) = Pr(Z>2·13) 2 0.5-0.4834 ~ Pr(X>55.6) =0.0166 = 0.0166 11) Pr(X < 48.9) $= Pr(\frac{\overline{X} - 62.5}{6.5} - \frac{48.9 - 52.5}{6.5})$ =Pr(2 < -3.6) = Pr(z < - 2.476875298) =Pr(ZL-2.48) - 0.5-0.4934 1.1 Pr(X<48.4) =0.0066 200066 111) Pr(49.72 x 254.9)

= Pr (49.4-52.5 \ \overline{x} -52.5 \ 6.5/120 6.5/120 6.5/120

 $X \sim N(44, 36) \text{ and } \overline{X} \sim N(44, 36/n)$ a) $Pr(\overline{X} > 75) = 0.2810$ $Pr(\overline{X} - 44) = 0.2810$ $Pr(\overline{Z} > 1) = 0.2810$ $Pr(\overline{Z} > \sqrt{m}) = 0.2810$ $Pr(\overline{Z} > \sqrt{m}) = 0.2810$ 0.5 - 0.2810 0.5 - 0.2810 0.5 - 0.2810 0.5 - 0.2810 0.5 - 0.2810

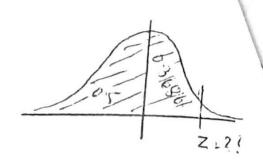
Frim Hables Z: 0.58

... 0.58 > \frac{150}{6}

Var < 0.58 X6

$$M < (0.58 \times 6)^{2}$$

 $M < 12.1104$
 $M = 12$
b) $Pr(X < 10.44) = 0.0016$
 $Pr(X - 44) = 0.0016$
 $Pr(Z < -3.6) = 0.0016$
 $Pr(Z < -3.6 \sqrt{n}) = 0.0016$
 $Pr(Z < -0.6 \sqrt{n}) = 0.0016$


0.0016/

0.5-0.0016

D. 4984

Whated Knigolom. $X \sim N(12.7, 3.1^2)$ and $X \sim N(12.7, 3.1^2/n)$ a) Pr(X < 13.5) = 0.8686 Pr(X - 12.7 < 13.5 - 12.7) = 0.8686 Pr(Z < 0.8) = 0.8686 Pr(Z < 0.8) = 0.8686 Pr(Z < 0.8) = 0.8686

From tables Z= 1-12 :.1-12 < 0.8 Vm 3-1 1-12×3-1 < Vm 0-8

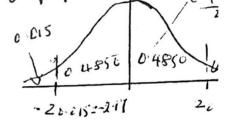
$$m > \left(\frac{1.12 \times 3.1}{0.8}\right)^{2}$$

$$= (4.34)^{2}$$

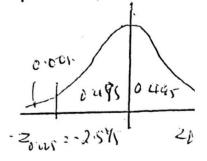
$$= 18.8356$$

Smallest value fr. = 19. 6) Pr(X>10.9) = 0.9738

$$\sqrt{n} > \frac{1.94 \times 3.1}{18}$$


$$\gamma > \left(\frac{1.94 \times 3.1}{1.8}\right)^2$$

Letorial Sheet Nos


a) 90% confidence interval for pop. mæeins


$$= \pi \pm 20.05 \frac{\circ}{\sqrt{n}}$$

1

c) 990 confidence interval for pro. me an is

= 748 + 0 68487731

= 748-0.68487731, 748.68487731

= 447 3151227, 748 6847731

= 747 3151, 748 6848

a) 98% confidence interval forthedifference in average temperatures at the two locations = (\$\overline{\chi_A} - \overline{\chi_B}\$) \pm Z_0.01 \sqrt{\frac{\sqrt_A}{\sqrt_A}} + \sqrt_B $= (59.5 - 54.3) \pm 2.33 \sqrt{\frac{61^2 + 5.9^2}{55}}$ $=2.2\pm2.33\sqrt{\frac{37.21}{50}+\frac{34.81}{55}}$ = 2.2 ± 2.33 Vo.715576923 + 0.63290909 = 2.2 ±2.33 V1.348486013 =22 ±233 ×1161243309 = 2.2 = 2.40569690 = 2.2-2.70569690, 2.2+2.705696960 =-0.50569690, 4.905696960 = -0.5057, 4.9057 b) 99 To confidence interval for the differen. the average temperatures at the two breations = (\$\overline{\gamma_A} - \overline{\pi_B}\) \pm \(\overline{\gamma_A} \) \frac{\sqrta_A^2 + \sqrta_B^2}{\gamma_B} \cdots \overline{\gamma_A} \) = (59-5-543) ± 2.545 \ \(\frac{6.1^2 + 5.9^2}{5.7} \) = 2.2 ±2.575V1.348486013 = 2.2 ±2.575 XI-161243309 = 2.2 + 2.990201521

= - 0.790201521, 5.190201521

= -0.4902, 5.1902

= 2.2 -2.990201521, 2.2+2.990201521

^{4 95%} confidence interval for the different between the means of banking and insurance

executives is $(\overline{x}_{1} - \overline{n}_{1}) \pm Z_{0} \cos \sqrt{\frac{\sqrt{\pi^{2}} + \sqrt{B}}{m_{1}}} + \overline{T}_{B}$ $\begin{array}{l}
(94 - 6.5) \pm i \cdot 96 \sqrt{\frac{3 \cdot 3^{2} + 2 \cdot 9^{2}}{40}} \\
= 2.9 \pm i \cdot 96 \sqrt{\frac{10 \cdot 89}{40}} + \frac{8 \cdot 41}{50} \\
= 2.9 \pm i \cdot 96 \sqrt{0.24225} + 0.1682 \\
= 2.9 \pm i \cdot 96 \sqrt{0.44045} \\
= 2.9 \pm i \cdot 96 \sqrt$

5 Mean \$\bar{n}\$
2 \(\frac{1}{2}\text{Ri}/10\)
=\{ 1.504+1496+1.491+1501+1.503+1.505+14\}
\(\text{t} \) \(\text{1.493} \tau \)
=\{ 1.499}/10
\]
=\{ 1.499} \quad \text{n.e. } \(\text{7.21.499} \)
Vanance \(\text{S}^2 \)
=\{ \frac{1}{2}(n_1 - 1.499)^2/9}
=\{ 1.427

= \((1.504 - 1.499)^2 + (1.496 - 1.499)^2 + (1.492 - 1.49 (1.501 - 1.499)^2 + (1.503 - 1.499)^2 + (505 - 1.499)^2 + (1.49 1.499)^2 + (1.502 - 1.499)^2 + (1.493 - 1.499)^2 + (1.49 (1.501 - 1.499)^2 \} /9

= \(\left(1.501 - 1.499)^2 \right)^2 + \left(1.493 - 1.499)^2 + \left(1.493 - 1.499)^2 + \left(1.493 - 1.499)^2 \right)^2 \right)^2 \)

= {0.000025+0000004+0.000049+0.00004

0 000016 + 0 000036+0 000016+0 000001+0 000036

0 000004}/9

= 0 000196/9.

95% confidence interval for prepulation mean

= $\bar{x} \pm t_0.025,9 \le Vm$ -1.499 $\pm 2.26 = V0.000196/9$ $= 1.499 \pm 2.26 = V0.000196$ = 1.499 $\pm 2.26 = V0.000196$ = 1.499 ± 0.003335148 = 1.499-0.003335148

= 1.49566485, 1.5023

Heyn $\bar{\pi}$ = $\frac{5}{12} \tilde{\lambda} t / t$ = $\frac{21}{13} \tilde{\lambda} t / t$ = $\frac{21}{13} \tilde{\lambda} t / t$ = $\frac{21}{13} \tilde{\lambda} t / t$ = $\frac{23}{13} t / t = \frac{23}{13} t + \frac{23$

6

$$2\pi + t_{0:025, 5} = \frac{5}{\sqrt{n}}$$

 $= 23 \pm 2.57 \sqrt{3.2/6}$
 $= 23 \pm 2.57 \times 0.430296443$
 $= 2.3 \pm 1.84686263$
 $= 2.3 - 1.84686263$
 $= 2.3 - 1.84686263$
 $= 2.3 - 1.84686263$
 $= 2.3 - 1.84686263$
 $= 2.3 - 1.84686263$
 $= 2.3 - 1.84686263$
 $= 2.3 - 1.84686263$
 $= 2.3 - 1.84686263$
 $= 2.3 - 1.84686263$
 $= 2.3 - 1.84686263$
 $= 2.3 - 1.84686263$
 $= 2.3 - 1.84686263$
 $= 2.3 - 1.84686263$

To 25 = 1.96, J=120 and enon E=20

E = Zoo25 J

Vπ < Zover =

= (196×120)

20

1 ≤ (11.76)²

= 138.2976

Thus the sample should consist of atmost 138 students.

$$\frac{3}{2005} = 1.645$$
, $E = 2.25$ and $0 = 150$
 $\frac{1645}{25} = \frac{1645}{25} = \frac{1645}{$

proportion of their who are infavour of an inc

in the humanities requirements

$$= \frac{1}{2028} + \frac{1}{200} + \frac$$

11
$$p = 0.63$$
 $q > 1 - p$
 $= 1 - 0.63$
 $= 0.05$
 $E \le 20.05 \sqrt{pq}$
 $\sqrt{m} \le \frac{20.05}{pq} \sqrt{pq}$
 $= \frac{1645\sqrt{0.63}\times0.37}{0.05}$
 $= \frac{(1.645\sqrt{0.63}\times0.37)^2}{0.05}$
 $= \frac{(1.645\sqrt{0.2331})^2}{0.05}$
 $= \frac{(1.645\sqrt{0.2331})^2}{0.05}$
 $= \frac{(0.7942133087)^2}{0.05}$
 $= \frac{(0.7942133087)^2}{0.05}$
 $= \frac{(15.88426174)^2}{0.05}$
 $= \frac{252.309771}{0.05}$
 $= \frac{252.309771}{0.05}$

Vom & Zovovr Vpg.

= 2.545 V C-63X037

0.491 0.491 20 as 2.2575 21 a

$$n \leq \left(\frac{2.575 \sqrt{0.63 \times 0.37}}{0.05}\right)^{2}$$

$$= \left(\frac{2.575 \times 0.482804308}{0.05}\right)^{2}$$

$$= \left(\frac{1.243221094}{0.05}\right)^{2}$$

$$= \left(24.86442187\right)^{2}$$

$$= 618.239475 \quad \text{i.i.} \quad n = 618$$

= -00705, 0.1705

13 P1 2102 250 9121-P, =1-0 408 = 0-408 = 0.592 122: 73 92=1-Pz = 1-0 292 = 0.292 = 0 708 99 To confidence interval for the differen beliveen the true proportions

= (pi-pz) IZovos V piget + pz 9/2

no =0.116 ± 2.575 \ 0.241536 + 0.206736 250 250 = 0.116 ± 2.575 V 9.66 144 X164 + 3.26944 X10 20.116 £2.575 V17.93088 X10-4 = 0.116 ±2.545 x 0.042344869 =0.116 ± 0.109038039 = D-116-0-109038039, D-116+0-109038c = 0.006961960216, 0.225U38039 =0.0070,0.2250

Tutoural Sheet No 9

Ho. TA = TB and then Pr(Awins) = 1/2 constR(Burns) = 1/4

Ho is accepted if B obtains a fuster tense than
in Ging reach of the three races supply Hour had

Pr (Type I Error) = Pr (Reject Ho | Hour had)

= Pr (Awins 3 races) Heis trace)

- (1)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

= 1 - (1/5)3

Ho, n= 65 and H1, n>65

Ho is rejected when \$1 > 66

a) Pr(Type I Error)

= Pr(Reject Ho) Hoishud

= Pr(\$\overline{x} > 66 - 65)

= Pr(\$\overline{x} > 66 -

: Pr(Type I Enn) = 0.1056 b) Pr(Type I Enon) - Pr(Cleecht Ho) Honfield vusartifice = Pr (X Z66 | Ho is false) = Pr (x - 65.5 < 66-65.5) = Pr(Z < 0.5) =Pr(z < 0 625) = Pr(2 < 0.63) = 05+0-2354 · 0-7357 will (Type I Emon) - U Y357 c) Pr (Type I Error) = Pr (Cicept Ho) Honfordse) - Pr (XCEE Hois foile) = Pr (X-6650 L 66-6650) = Pr (2 < - 05) Pr(2 c-0625) = Pr(Z <- 0.63) = 0.5 -0.235Y = 0-2643 · Pr(Type II Emor) = 02043

He The man can threw a sin from time Hi The man can throw a sin once our

of six for a Hamburd your lies is be

Ho is rejected if the member of, sin of towned to Els than 3 Benomical distribution is used in this knitten . In to, Prasin) = 2/3 and for the Praise) = Pr(Tayfae I Error) Probability mice = 3 = Pol Reject Ho (Hoisture) Publishing fraise = Pr(x=0) + Pr(x=1) + Pr(x=2) $\frac{2}{3} + 6 \left(\frac{1}{3}\right)^{5} \left(\frac{2}{3}\right) + \frac{2}{6} \cdot \frac{1}{3} \left(\frac{1}{3}\right)^{4} \left(\frac{2}{3}\right)^{2} + \frac{2}{6} \cdot \frac{1}{3} \cdot$ = 0-100137174 . P. (Type I Ema) = 0.100137174 PreType I Emos) = Pr(accept Ho / He infalse) = Pr(X=3) +Pr(X=4) +Pr(X=5) + Pr(X=6) = 6.5.4 (1)3(5)3+65 (1)4(5)2+6(1)5(5)+(1) = 20 x125 + 15 x25 + 30 46656 46656 HEEST HEEST = 3500 + 375 + 30 466SE HEGSE MEESE HEESE - 2906 HEEST = UCE 22857EET .. Pr (Type I Enin) = 6.6.6.2285265

: 1. Pr(Type IL Emm) =1-0 c62285665 = 0 937714334

He is a specific (=21) and Hi in > 100

Test Statistic 2

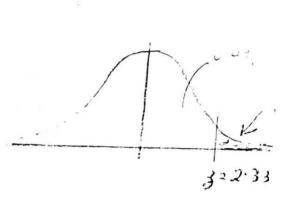
- 51 - 100

3/67

= 25.8-21

15/132

= 08


15/132

= 08/132

= 4.525483

15

= 3.616988933

99 is appared on the

. ;- :

and so the null hypothesis Ho is rejected

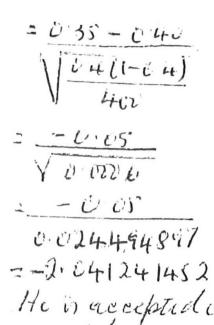
5 Ho: n = ne(=55) Hi: $n \neq ne$ Test (talistic 2 a)

= $\frac{\pi}{7} \cdot n$ = $\frac{562 \cdot 55}{532/181}$ = $\frac{12}{0.62853936}$ = 1.909188309a) He is rejected as

the test stalishe his in the entired rigion. b) to is accepted on 0 001 the list startistic him acceptance region. 32-2575 e) Ho is accepted on the tost statistic he the acceptance region Ha M=Mal= 20) and High of= Me Test Statistict = 21 - M Son = 21.9-20 34/00 = 1.4 60625,61 hat firm 0 460236312 = 2-499134798 The test statistic her with outreal region and so the mull hypotheses to is us, (7) (1/16) 100 110 pc - no (=108) Hi MZMo Kin n = (107 +1065+1075-4108+106)/5 : 53.575 =107 Semple Vanimer se = 1 (21-104)/4 = 1 (107-107)2+(nor-101) +(10.75-107)2. (108-107) + (100-107)2}

= 1 { 0' + (0.05) 2+ (0.05) 2+ (0.05) 2+ (0.05) 2+ (0.05) 2+ =1 10+00125+001+001+001} = 0 WERS NR 5 = 0 00625 Test Statistict = 11 - Mi 3/67 = 10.7 70.2. VO 00621/15 10.00125 0.035355335 = -2.828427125 The test statistic his in the entire

rejected This shows that the training has imprived his time


Sample Kenn : (9 c 710 4 +111+101 +10 (+10-5)/6 =10 4 Sample Vanance si

= (Ju-10 4) 1/5 · [] (96-10-4)2+(104-10-4)2+(11-10-4)2+(

The lest statistic lier in the critical region and so the mult hypothesis Ho rejected

Sample Mean of 4 = 3 xc/15 = 3-864 Semple Venunices' 21 / 2 X2 - (2 Xc) 3}

=1 | 226.1274 -223.45744 : 2.16996 14 = 0.154999142 x 28 : 0.154997142 1) 110: 12: 10 (240) and High < me Test Statistict 2 11-110 5/v.n = 3864-4 VU 154997142/VIS -0.136 VE 810333142 = - 0 136 to 05,142 0.101652067 = -1.33789704 Ho is were ptied on the test stalled his in the acceptance region ii) Hi w= mo and Hi + mo Test Statistick =-133784764 Ho is wearpted as the test statistice his in the exceptance region 10. 7 ps 035 Hu p=po (=0.4) and Hip < po Test Statistic Z 2 /3 /20

in the acceptance region.

0.49.

2:-2-33

Ho $p=p_0(=0.5)$ and H_1 $p < p_0$ $p_0 = \frac{38}{100} \Rightarrow p_0 = 0.55$ $\frac{0.5}{100}$ $\frac{p_0}{p_0(1-p_0)}$ $\frac{p_0(1-p_0)}{p_0(1-p_0)}$ $\frac{20.38-0.5}{100}$ 22-2.05

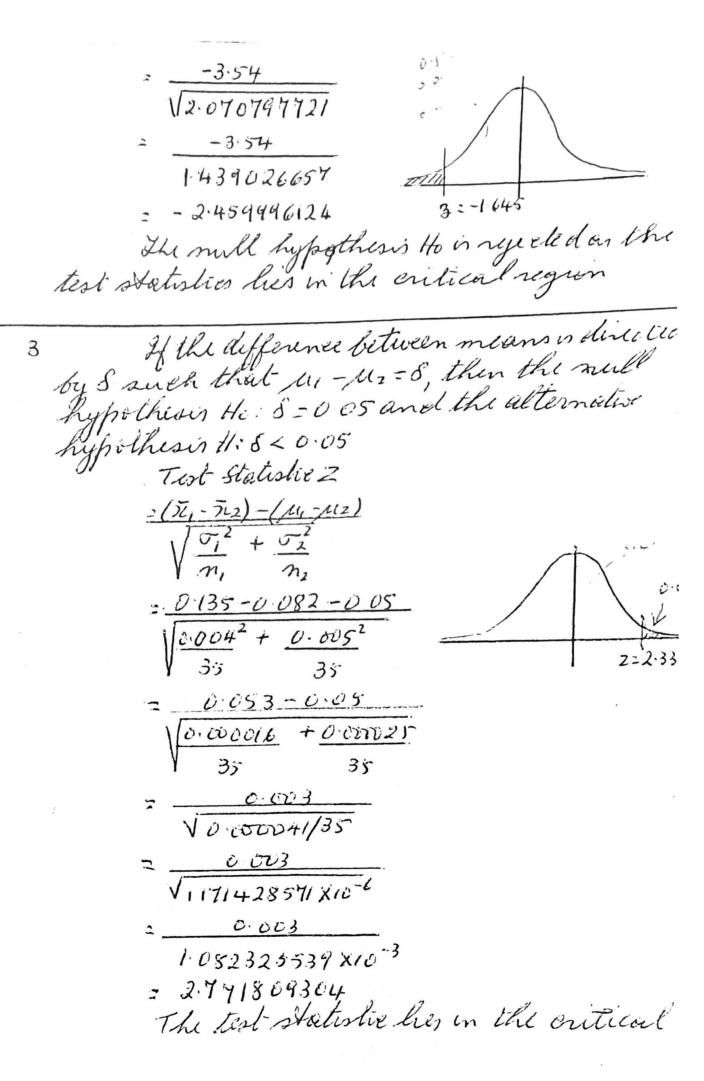
= -0.12 Vo 0025

= <u>-012</u>

= -2.40

The test statistic his in the contract region and scathe mult hypotheses He is rejected. It's elean that the coin is branced in favour of tails - 1. utowal Sheet No 10

Ho My= Mo and Hi MW>ME Test Statistic2 $\frac{(\overline{\chi}_{N} \cdot \overline{\eta}_{c}) - (\mu_{N} - \mu_{c})}{\sqrt{\frac{\overline{\eta}_{N}}{\eta_{N}} + \frac{\overline{J}_{o}}{\eta_{c}}}}$ $= \frac{11.5 - 9.7}{\sqrt{\frac{1.2^2 + 1.6^2}{61}}}$ = 1.8 Vo.023606557+0.041967213 0.256073759 7.029224729 significant and so the null hypotheous, is rejected


Ho: Mg = Mb and Hi: Mg 2 Mg

Test Statistic 2

= (Jzg - Fib) - (Mg - Mb)

\[
\frac{\sqrt{3}^2 + \sqrt{b}^2}{ng} \\
\frac{m_b}{ng} \\
\frac{m_b}{108} \tag{4.6}^2
\]

2

region and so the null hypothesis is rejected

Ho: 5,2 2 5,2 and H, 5,2 > 5,2 Test Statistic F = Larger Variance Smaller Varience Fo. 05,9. 9d. 1 ... - 1265625 = 3.18 The test statistic his in the acceptance region and so the mull hypothesis His accepte as a result of this, the probed vanance can t used here Pooled Vanance S? =(n,-i)5,2 + (n,-i)52 $(m_1 + m_2 - 2)$ $= \frac{9x8^2 + 9x9^2}{(10+10-1)}$ = 9x64 + 9x81 = 576 + 429 = 725 xx 52 725 Hox Mi=Mz and H, M, +Mz Test Statistic t = bi, - siz) - (1, -12) 52 in the profession V 52/m, + 52/m2 = <u>81-98</u> \77.5/10+72.5/10

= -17
\[
\frac{-17}{\frac{12.5

5 Ho To = To und HI: To > To 2

Test Statistic F

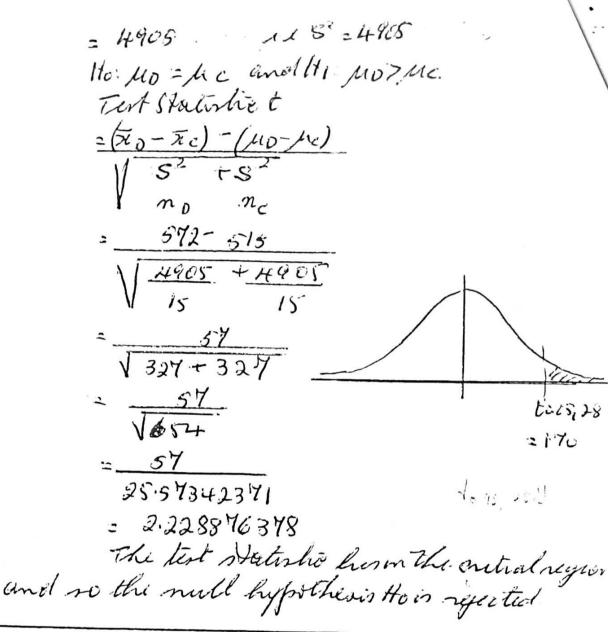
Larger Vanance

Smaller Variance

$$=\frac{81^2}{3^{1/2}}$$

= 2.014390582

1-0.05,14,1


The test-statustic his in the : 240. acceptance region as the null hypothese is accepted. As a result, the vernances can be probled.

28

= 14×3249+ 14×6561

= 45486+ 91854 28

= 134340

The two sets of data i enation can't be considered to be independent and so the usual test for the difference between two means can be applied here. The variable that we can use in this case is the difference between the ratios ide = Tic-12i

Stock	Ratu 2009	Rato 201	11 des	
N ₅	ric	rzi	ni-rai	1 di
1	40	32	40-3228	64
2	33	23	33-23 =10	100
3	24	16	24-16=8	64
4	21	1.3	21-13 = 8	64
5	30	23	3= 23 = 7	49
6	25	19	25-14=6	36
7	19	14	19-14:5	25
8	24	21	29-21 = 8	64
9	20	17	20-14 = 3	9
10	35	20	35-20 = 15	225
11	17	13	17-13 =4	16
12	20	14	20-14 = 3	4
			85	725

$$= \frac{1}{11} \left\{ \frac{725 - 85^{-2}}{12} \right\}$$

$$= \frac{1}{11} \left\{ \frac{725 - 85^{-2}}{12} \right\}$$

$$= \frac{1}{11} \left\{ \frac{725 - 602 \cdot 083}{12} \right\}$$

$$= \frac{122 \cdot 916}{11}$$

$$= \frac{1114 + 242 + 2}{11 \cdot 14 \cdot 242 + 2}$$

$$= \frac{3 \cdot 342789616}{16}$$
Ho Ma= 0 and Hi Ma = 0

Test Statistic t= $\frac{1}{12} \frac{1}{12} \frac{1}{12}$

$$= \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12}$$

$$= \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12}$$

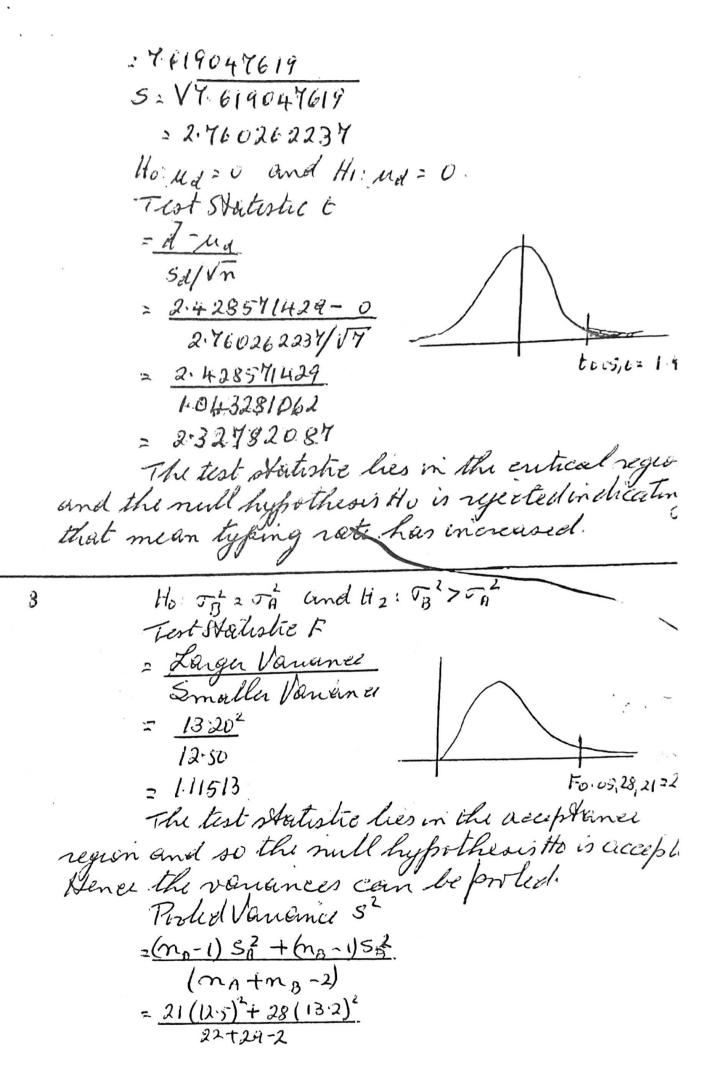
$$= \frac{1}{12} \frac{1}{12}$$

3.342489616/11

= 7083 0.464980242

7.340392088

to 25,11 : 2 to:025,11 = -2.10


The test statistic his in the critical region and so the null hypothesis Ho is rejected is a change in the price / elerning ratios for the two years.

Scentury	Before	after	Diff. di	di²	
No	rii	rai	-ry-ry		
1	72	75	75-71=3	G	
2	68	66	66.68:2	4	
3	55	60	60.55=5	25	
4	58	64	64-58 =6	36	
5	52	5.5	53-52=3	4	
6	55	57	57-55=2	4	
4	64	64	64-64-0	<u>"</u>	
_ ~	1	1	141	87	

$$\bar{d} = \sum_{i=1}^{T} \frac{dc}{Y}$$

7

= 2.428571429

 $\frac{\hat{p}_{1} = 412}{5000!} \Rightarrow \hat{p}_{1} = 0.0824$ $\frac{\hat{p}_{1} = 412}{5000!} \Rightarrow \hat{p}_{2} = 0.0913 \quad 2 \quad \hat{p}_{2} = 0.0913$ $\frac{\hat{p}_{1} = 412}{4500} \Rightarrow \hat{p}_{2} = 0.0913 \quad 2 \quad \hat{p}_{2} = 0.0913$ Parted proportion $\hat{p} = \frac{\alpha_{1} + \alpha_{2}}{\alpha_{1} + \alpha_{2}}$

10
$$\hat{p}_{1} = \frac{44}{200} \Rightarrow \hat{p}_{1} = 0.37$$

$$\hat{p}_{2} = \frac{86}{200} \Rightarrow \hat{p}_{2} = 0.43$$

Portid proportion p = 21, +212 nitnz = 74+86 200 this 2160 3 6 = 040 HIV Ho. p, 2/2 and Hi. p, +p2 Test Statistic Z 2(p,-p2) -(p,-p) = -0-77-043 200 + 0.4x0x 3 -0.06

0 048484794

-1-22474487

The test statistic his in the acceptance region and so the null hypotheris Ho is accepted

Ho There is no real relationship between 11 the standard of then and speed of professional advancement.

Hi There is areal relationship between the standard of dress and speed of professional

advancement

11 1	10
O.bservo	d Villa

	Slow	Annage	Foist	what.
Very well Drived	32	57	32	120
Drived	28	6.9	22	114
Poorly Present	15	33	13	61
ENTER	75	158	67	3 02

300 × 75 × 120 300 300

	Enk	rected Fr	eguen ey	
	1	1		Tital
Verywell	3000	158 X (20 310	300	120
Drined	230	263.2	>26-8	
Will	350	158 X 114	47 X119	119
Dressed	= 29.75	262.673	=26.58	
Poorly	75×61 300	158 X61 3UV	300	
Duned	=15,25	=32·13 =32·13	=13.623 =13.62	61,
TiTal	75	158	67	300

Test Statistic X

$$\frac{(32-30)^{2}+(56-63\cdot 2)^{2}+(32-26\cdot 8)^{2}+(28-29\cdot 7)}{30}+\frac{(33-26\cdot 8)^{2}+(28-29\cdot 7)}{26\cdot 8}+\frac{(28-29\cdot 7)^{2}+(33-32\cdot 13)^{2}+(15-15\cdot 25)^{2}+(33-32\cdot 13)^{2}+(13-13\cdot 62)^{2}}{(13-13\cdot 62)^{2}}$$

$$= \frac{2^{2} + (-4.2)^{2} + (52)^{2} + (-1.45)^{2} + 6.33^{2} + (-4.58)^{2}}{30 \quad 63.2 \quad 24.8 \quad 24.45 \quad 62.64 \quad 26.58}$$

$$\frac{(-0.25)^{2} + (0.84)^{2} + (-0.62)^{2}}{15.25 \quad 32.15 \quad 13.62}$$

=0133333370.8202531+1.0039552+0.10294, +0.6393633+0.4891798+0.0040984+0.0235574

0.0282232 = 3.5499048 Degrees of freedon

23-1) (3-1)

degrees of furthern are

X0.05,4= The test statistics lies in the acceptance region and so the null hypotheses Ho is accepted

Observed Frequency |VendorA | Vendor B | Vendor B | Tital Ryected 12 8 20 40 Nit-perfect 23 12 30 butacuttable 65 Perfect 85 60 110 255 120 80 160 300

Ho The three vendor ship products of equal quality
Hi The three vender do not ship proche

of equal quality. Test statistic XI

12

Expected Frequences

		/	L'		
		VENDER I	311.2 1	1 11, 11 -	Tital
	Ryceted	120840	360	160×40 360	
360 X 120	42	=13.33	:8.88	: 17.77	40
35-	360	-13.33	28.89	214.78	
- 1.71.0	Not perfect	120X65 360	80×65	16 0X65 360	مدد
X=0	but	221.66	214:44	= 28·3 g	65
	acceptable	-21-61	=14.44	28.89	
	Perfect	120 7255	30×255	160 8253	253
		= 85	296.66	2113-33	200
			=56.07	-113.33	
	Wal	120	80	160	
		. 3			,

$$+ \frac{(12-13\cdot33)^{2} + (8-8\cdot89)^{2} + (20-17\cdot78)^{2} + (23-2167)^{2}}{13\cdot33} + \frac{(8-8\cdot89)^{2} + (20-17\cdot78)^{2} + (23-2167)^{2}}{21\cdot67} + \frac{(12-14\cdot44)^{2} + (30-28\cdot89)^{2} + (85-85)^{2} + (60-50\cdot67)^{2} + (85-85)^{2} + (60-50\cdot67)^{2} + (85-85)^{2} + (60-50\cdot67)^{2}}{14\cdot44} + \frac{28\cdot89}{28\cdot89} + \frac{85}{50\cdot67} + \frac{50\cdot67}{50\cdot67} + \frac{28\cdot89}{50\cdot67} + \frac{28\cdot89}{50$$

(110-113-33)2

113.33

$$\frac{2(-1.33)^{2} + (-0.84)^{2} + (2.22)^{2} + (-2.44)^{2} + (1.11)^{2} + (1.33)^{2}}{13.33} = \frac{8.39}{8.39} = \frac{17.48}{14.44} = \frac{14.44}{28.85}$$

$$\frac{0^{2} + (3.33)^{2} + (-3.33)^{2}}{85} + \frac{(1.33)^{2}}{13.33} = \frac{21.67}{21.67}$$

= 0.1327006+0.0891001+0.2771878+ 0.4122991+0.0426479+0+0-1956749+0.09784 +0.0816289

> = 1.3290855 Degrees of freedom = (3-1)(3-1) (2-1)(4-1)

The lest statisties his mith acceptable

-
-
70

	Observed Frequency					
	Deaf	Blind	Other	without		
			Handiesp	Hendical	1	
Abord	11	3	.14	36-	663	
Average	24	il	34	134	203	
Below	5	6	H	3. 9	48	
wal	40	20	6.0	200	320	

without firstly defining the multhypothesis Ho end the alternative hypothesis His expected Frequency.

		1-	cua t	requenc	u.
	Deep	Blind	Other	without	1
above	HO X64	2.2	Hundicop	Handreap	
A	326	320	320	320	
Average	28	=4	=12	= 40	64
Average	40 x20g	20×208	2 - 0		
" ooning"	D V	32v	60 x 203	200 1288	
	=26	: 13	3.2c	320	208
		. 15	: 39	= 13 o	208
Below	40 748	20148	60748	9	
	320	320	322	200148	
Average	= 6	~ 3	= 9	32i	1: 6
				230	48
	40	20	10		
	-3 0	/	60	200	320

The standard 22 analysis with 6 degrees of freedom earnest be performed as two of the

estimated values in the 'blind' column one listh. 5. So the prooling of cells has to be performed before it analysis can be conducted. The proling of cells can be performed as suggested in the problem for both the observed and inspected data.

,	Observed Enquency					
	with Handicap	without Handich	wood			
Above Averige	28	36	64			
Average	44	134	208			
Below	18	30	H8			
whi	120	2100	320			

Ho: The workers purprimance is independent of the presence or absernce of handical Ithe presence or ales cence of handicap

Expected Frequency.

	With Handricals	We thout Handian	what
Abord Average	120×64 320 = 24	200 x 64 320 ~ 40	64
Mohagi	120x 208 320 = 48	200 x 208 320 7130	208
Below	120 X48 320 = 18	200×48 320 = 30	48
Tital	120	200	320

Test Statistic 2!

=
$$\frac{[(0-E)^2]}{[E]}$$

= $\frac{(28-24)^2+[36-40]^2+[74-78]^2+[134-130]^2+}{24}$

= $\frac{(28-24)^2+[36-40]^2+[74-78]^2+[134-130]^2+}{40}$

= $\frac{(13-18)^2+[30-30]^2}{18}$

= $\frac{(41)^2+[-41]^2+[-4]^2+[41]^2+0^2+0^4}{24}$

= $\frac{(41)^2+[-41]^2+[-4]^2+[41]^2+0^2+0^4}{24}$

= $\frac{(41)^2+[-41]^2+[-41]^2+[41]^2+0^2+0^4}{24}$

= $\frac{(41)^2+[-41]^2+[-41]^2+[41]^2+0^2+0^4}{24}$

= $\frac{(41)^2+[-41]^2+[-41]^2+[41]^2+0^2+0^4}{24}$

= $\frac{(41)^2+[-41]^2+[-41]^2+[41]^2+0^2+0^4}{24}$

= $\frac{(41)^2+[-41]^2+[-41]^2+[41]^2+0^2+0^4}{24}$

= $\frac{(41)^2+[-41]^2+[-41]^2+[-41]^2+0^2+0^4}{24}$

= $\frac{(41)^2+[-41]^2+[-41]^2+[-41]^2+0^4}{24}$

= $\frac{$

14 Mean

= Itino

= 0x7+1x2c+2x12+3x4+4x1+5x1

7+20+12+9+1+1

· U +20+24 T27+4+5

= 80 x2 Meen= 16

For benomical distribution mean imp and her n = 5 and so mean = 5p -15p=16

$$P = \frac{16}{5}$$

$$Pr(X_2 r) = \frac{n!}{n!} (0.32)^{r} (1-0.32)^{m-r}$$

$$r!(m-r)$$

$$Pr(X_2 r) = \frac{n!}{5!} (0.32)^{r} (0.68)^{m-r}$$

$$r!(m-r)$$

$$Pr(X_2 r) = \frac{5!}{5!} (0.32)^{r} (0.68)^{r}$$

$$= \frac{5!}{(0.32)} (0.68)^{r}$$

$$= \frac{5!}{(0.32)} (0.68)^{r}$$

$$= \frac{5!}{(0.32)} (0.68)^{r}$$

$$= \frac{5!}{(0.32)} (0.68)^{r}$$

$$= \frac{5!}{(0.32)^{2}} (0.68)^{r}$$

$$= \frac{5!}{(0.32)^{2}} (0.68)^{r}$$

$$= \frac{5!}{(0.32)^{3}} (0.68)^{r}$$

The inspected frequencies are evaluated

	O.bs. Freg.	Enperted Friquency
O	7	Prox = 01 X50: 50 X0 14 5 39 3356 - 7-27
1	20	Pr(x=1)x50 =50x0-342102016=14.11
2	12	Pr(x=2) X50 = 50 × 0 321978368 = 16.10
3	9	Pr(1=3)X90 =50X01SiS19132 = 7-538
4	1 > 11	Pr(X=4)XD =50x0,035651584= 1.73/(35)
	1'	Pr(X=5) x0 = 570x0.00 33554432.0.17
	50	50.01

It can be seen that the last two espected frequences are less than 5 and so these can be provied with the third espected frequency from the bottom.

T.	he modified torble is	shown below
-2(Observed Francy	Enberted Enguera
ರ	7 1	7.27
ì	20	17.17
2	12	16.10
3,4,5)1	9.53

Fost Statistic X2

: 00100275+0.4881414+1.044.0994+02267471

= 1.7690154

Degrees of freedom

= 4-1-1

= 2 | Louishaut aux dy m

22 - 20

The test statistic his in the acceptance region and so the null hypothesis the is recepted

Ho. The doita follow binomial Ashibution

Hi: The data do not follow benomial

distribution

Hean. 15

= 0x5+1x23 +2 x23+3x25+4x14 +5x10 +6x0

5+13 +23+25+14 +10

= 23+46 +95+56 +50

100

= 250 11 Mian = 2.5

 $Pr(X \Rightarrow x) = \frac{e^{-2\pi} 2.5^{2x}}{x!}$ from the restriction of the remark

Au recharter

Ho: The data fit a Poisson elistribution Hi. The data do not fit a Poisson

distribution.

-		The second section of the second section of the second section		
	×.	Pdx=2)	106. Frea	e Ent. Frez = IN Polx: 1)
(ט	0.0820849	5 '	100×00820849 = 3.20849 = 8.21
į	ì	0-2052125	23	(UZ NO 2052125 = 30 52125 = 20 52
٤	?	0 2575152	23	100×02565152 =25.65152 = 2565
3		0.2134630	25	10010-2137630 = 2137630 = 2138
Ä	+	0 -1336018	14	100×0-1336018 = 13-36018 = 13-36
, 5	- 1	0.018910.0	10	100 x 0.0 68009 = 6.68009 = 668
Edin	ne	O 0420212		102X0-0420212 = 420212 = 4-20
		נר בנוסטם ו	100	100
				74.17

Pr(X≥6) = 1 - Pr(X €5)

=1-0 954978Y=1- [/1 (x== -1/2)= = 0. 0420212 1. (Pr(X > 6) = 0. 0420212 It can be own that the last enpected frequency is less than 5 and it is proled with the espected frequency alove it. The Hable is mochfied as shown below.

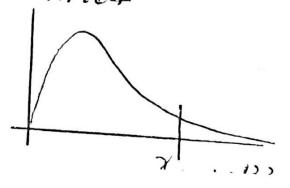
21	Obs Greg.	Emp. Frey.
0	5	8.21
ì	23	20 52
2	<i>2</i> 3	25.65
3	25	21.38
4	14	13.30
mmar.	10	10.88

Test Statistic XX $= \sum_{i} \frac{(v-E)^2}{i^2}$

$$= \frac{(5-8\cdot21)^2 + (23-20\cdot52)^2 + (23-25\cdot65)^2 + (23-25\cdot65)^2 + (23-20\cdot52)^2 + (23-25\cdot65)^2 + (23-20\cdot52)^2 + (23-25\cdot65)^2 + (25-21\cdot38)^2 + (14-13\cdot36)^2 + (10-10\cdot88)^2}{21\cdot38}$$

$$= \frac{(-3\cdot21)^2 + 2\cdot48^2 + (-2\cdot65)^2 + (3\cdot62)^2 + (0\cdot64)^2}{20\cdot52}$$

$$+ (-0\cdot88)^2$$


$$+ (-0\cdot88)^2$$

$$= \frac{(5-8\cdot21)^2 + (23-20\cdot52)^2 + (23-25\cdot65)^2 + (2$$

+ (-0.88)2 10.88

=1.255067+0.2997271+0.2437816+ 0.6129274 +0.0306586 +0.0711764

= 2.54 33381 Degrees of freedom =4

region and so the null hypotheois Ho is accepted.

16 the The weekly scales follow Poisson distribution with variance 4

distribution with variance 4

Pr(X=2) = e-4 42

Prixa	10/45	1 P 1 + 10 - D 1 - 1
(N= X)	ors. meg	Enpethill Frey: 50 (F(X:2)
0.0183152	3	50×0.0183150 = 0.41548 = 0.92
0.0732625	4) 14	5010 0432625 2 3.663125 2 3.66 4.58
0 1465251	7 /	70 x 0.1465251 = 7.326253 = 7.33
1 1),	
1		50 x 0,1953668 = 9.76834 = 9.47
1 1		50 X 0 1953668 = 9.76834 = 9.77
0-1562934	É	30 x 0 1562934 27. 81467 = 781
0 1041956	6	50×0-1041952 = 5-20978 = 5-21
0.1106441	3	
. T	Cin	50x0-1106741 : 5.5 33 7 05,553
	30	50
	0-0183157 0-0732425 0-1465251 0-1453668 0-1453668 0-1562434	0.0732625 4 14 0.1465251 7 0.1953668 11 0.1953668 10 0.1562934 6 0.1041956 6 0.1106741 3

final entry is greater than 5. The modified table is then oftained

7	Observed Frequency	Experted Enguency.
0,1,2	14	11.91
3	11	9.77
4	טו	9.44
5	6	7.81
6	φ	521
>6	3	<u>57-53</u>

Test Statistic 2.2 $= \sum_{i=1}^{\infty} \frac{(o-i=)^2}{i}$ = (14-11.91)2+(11-9.41)2+(10-9.44)2+(6-4.81)2+ 11.91 977 977 781 $\frac{(6-5\cdot21)^2+(3-5\cdot53)^2}{5\cdot21}$ $=\frac{(2.09)^2+(1.23)^2+(0.23)^2+(-1.81)^2+(0.74)^2}{11.91}+\frac{(9.77)^2+(0.23)^2+(-1.81)^2+(0.74)^2}{9.77}$ + (-2.53)2 = 0-366759+0-1548515+0-0054145343+ 0.419475+ 0.1197888+1.1574864 = 2.223775234

Degrees of freedom

= 5

The test statistic his in the acceptance 22 61,52 151 region and so the mull hypothesis Ho is distribution with variance 4

arranges absent the seven higher in such autistic